节能新能源汽车

研报:有关大功率充电的若干问题讨论

2017-06-16 17:59:53 零排放汽车网-专注新能源汽车,混合动力汽车,电动汽车,节能汽车等新闻资讯 网友评论 0

核心提示:影响电动汽车发展的两大主要因素是里程焦虑和充电焦虑,随着动力电池技术地不断突破,电动汽车续航里程逐渐提高。乘用车方面由最初的150km,已经提升到了400km,基本上已经解决了电动汽车的里程焦虑 。...

影响电动汽车发展的两大主要因素是里程焦虑和充电焦虑,随着动力电池技术地不断突破,电动汽车续航里程逐渐提高。乘用车方面由最初的150km,已经提升到了400km,基本上已经解决了电动汽车的里程焦虑 。与此同时,充电反而变成了一个核心的技术问题,甚至成为中外新一轮技术竞争的焦点问题。宝马、戴姆勒、福特、奥迪以及保时捷5家车企共同宣布,将会打造一个350kW的快速充电网络,随后特斯拉也加入到大功率快充的阵营中,其新一代的Supercharger充电功率甚至要高过350kW。

如何认识这一新的变化?中国电动汽车百人会邀请有关专家进行了研讨,现将讨论中的一些观点进行归纳,以作为进一步研讨的基础。

一、什么是大功率充电

1、大功率充电的概念

目前,业界还没有对大功率充电进行明确的定义。我们姑且将电动汽车搭载的电量设定为100kWh(按照每百公里20kWh耗电量计算),且充电倍率>2C(即半小时充满电)为前提条件,充电10-20分钟(与传统燃油车的加油时间保持一致),可以行驶>100km的充电功率定义为大功率充电。

2、大功率充电的应用场景

首先,乘用车采用大功率充电,充电时间与燃油车的加油时间大体一致,这样就不会长期占用车位,也不会改变用户的用车习惯,能够缓解北上广深等城市停车位资源紧张的现状。其次,商用车方面,充电时间将会直接影响到运营收益,因此,出租车、共享汽车(分时租赁等)等,对于大功率充电是有迫切需求的。

简单来说,大功率充电可以降低电动汽车的补电时间,提高出行效率。

二、大功率充电的优势

1、与燃油车的加油体验基本一致

目前,我国电动乘用车用的直流快充桩充电功率为40-60kW,实际充电时间普遍大于1小时,即便是特斯拉的超级充电站也需要30分钟,而加油则只需要10-20分钟,从能源补给的便利性来讲还不能与燃油车相比。而大功率充电(假设350kW)几乎可以实现与加油相同的用户体验,有助于打消客户的充电顾虑,增加购买信心。

2、提高了充电基础设施运营商的盈利能力

服务能力方面,比如40kW的充电桩一天的服务能力是10辆车,而350kW的直流大功率快充桩,一天就能服务80辆车。盈利能力方面,比如某国产纯电动乘用车的装载电量为30kWh,充电倍率为3C,以北京服务费0.8元/kWh为例,40kW的充电桩1小时所赚取的充电服务费为30×0.8元×3(20分钟充满,一小时可以充3辆车)=72元,而将来的电动汽车搭载的电量为100kWh,充电倍率为4C(未来可能达到6C),350kW的充电桩1小时所能赚取的充电服务费为100×0.8元×4(15分钟充满,一小时可以充4辆车)=320元。因此,当前普遍亏损的充电基础设施运营商对于大功率充电是迫切需要的。

3、有助于提高电动汽车的市场份额

如果350kW大功率充电变为现实,随着电池技术的不断突破,当电动汽车的续航里程达到500km左右时,电动汽车与燃油汽车从使用习惯上来讲已无多少区别。而且随着电动汽车生产成本的下降、碳交易、绿证制度的不断完善、V2G技术的应用,电动汽车的全生命周期成本优势会突显出来,届时电动汽车的市场份额势必会逐渐增加。

三、实现大功率充电的要求

1、对动力电池的要求

假设未来电动汽车的续航里程为500km,每100km消耗20kWh电量,整车需要配备电量为100kWh。从实际使用角度出发,充电分为两种情况:一是临时补电。不需要充满,只需要所充电量足够跑到指定充电地点即可(城市内续航里程大于100km)。此种情况下按照燃油车的使用习惯,即加油时间为10-20分钟,那么充电倍率为2C即可,充电功率为200kW,我国现有的标准是可以完全覆盖的。二是完全充满。同样按照汽油车的加油习惯10-20分钟为例,充电倍率需要至少3-6C之间,充电功率需要300-600kW之间,目前我国的充电标准无法覆盖如此大的充电功率,需要重新制定充电标准。

动力电池重量和比能量方面。我国目前三元电池的系统比能量大约在140Wh/kg左右,如果要搭载100kWh的电量,电池系统的重量估计在714kg,对于乘用车来讲是不可接受的。另外,在国内目前的动力电池比能量和主流纯电动乘用车的技术水平下,对于如何有效利用车内的空间来搭载100kWh的电量所面临的挑战还是比严峻的。

充电倍率方面。在我国现有的动力电池技术水平下,已经实现了乘用车用锂离子电池3C的充电倍率,4C也在推广验证阶段,在保持高比能量的前提下实现6C的充电倍率,至少在我国的乘用车用锂离子动力电池市场上还没有类似的产品。

电池热管理方面。由于锂离子电池的特性,低温下无法实现快充,而高温时快充会导致电池发热,因此,需要热管理系统来确保快充的可靠性。所谓热管理系统,就是在低温下为电池加热,加热到快充的窗口后再进行快充;高温下给电池降温,克服快充带来的发热问题,把热量带走,以确保电池在全气候下健康的快充。

2、对充电桩的要求

要实现大功率直流充电需要从电压和电流两个方面来提升,由此会对充电桩的设计提出新的要求。

电压方面,假设提升到1000V,GB/T18487.1-2015是能够覆盖的,但在元器件的耐压、绝缘等方面,需要重新设计。

电流方面,假设从250A提升到350A甚至500A,如果不采取冷却措施的话,电缆将会变粗许多,充电体验将更差。如果保证电缆规格不变的情况下,需要采取一些复杂的措施,比如添加特殊的冷却系统。德国在这方面进行了一些研究(如图1所示),当线缆采用冷却系统之后,不仅温度可以迅速的降到50℃以下,而且线缆的重量、粗细程度也有所下降。

图 1添加冷却系统的线缆(图片来源于奥特迅)

图 1添加冷却系统的线缆(图片来源于奥特迅)

温度方面。当采用大功率充电的时候,单位时间传输的能量会增加,而温升同样会增加很多,所以需要在整个电路设计上增加更多的温度检测以及饱和措施。以350kW充电,电效率为95%为例,发热功率为350kW×5%=17.5kW,如散热不畅,可能会造成大的安全事故。在温升方面,欧洲要求在充电过程中任何点的温度都不超120℃,而日本则更保守一点,如果在充电过程中的温度超过90℃的时候是可以延长一段时间再进行保护,但如果超过120℃的时候就需要立即保护。

兼容性方面。首先是充电接口,由于GB/T 20234.3-2015中规定额定电流最大为250A,因此,采用大功率充电的充电接口到底是采用全新的接口,还是要兼容原来的接口,需要进行论证。其次,已有的通讯协议是不是能支持400A以上的电流,同样需要探讨。最后,大功率充电站应具备宽范围功率的兼容性,可以柔性、智能分配充电功率,既可以满足大功率充电需要,也能够兼容不支持大功率充电的电动汽车充电需求,这样也能提高充电桩的利用率。比如:Charge point已经生产出了功率可达400kW的直流充电桩,它是由若干个充电功率为31.25kW的充电模块组合而成,模块之间可以随意组合。如果想得到400kW的输出功率,需要12个功率模块组合,单枪输出即可;如果是双枪输出,则每支枪的输出功率为200kW;根据不同的功率模块组合,得到不同的输出功率。

电流速度方面。根据GB/T18487.1-2015中规定,在充电阶段,车辆控制装置向非车载充电机控制装置实时发送电池充电需求参数,调整充电电流下降时:I>20A时,最长在I/dlmin内将充电电流调整到与命令值相一致, 目前dlmin为20安/秒。如果在充电电流为350A(或500A)的情况下,电流不能及时降下来,很有可能会造成电池过充,从而影响电池的使用寿命和安全性。目前在大巴车上已经发现这个问题,需要考虑在大功率充电标准制定的时候对电流速度进行重新定义或提升。

心情指数模块
digg
作者: 来源:零排放汽车网

[错误报告][推荐][收藏] [打印] [关闭] [返回顶部]

  • 验证码:

最新图片文章

最新文章

网站导航